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Abstract—An enhanced TIMESAT algorithm was developed
for retrieving vegetation phenology metrics from 250 m and 500
m spatial resolution Moderate Resolution Imaging Spectrora-
diometer (MODIS) vegetation indexes (VI) over North America.
MODIS VI data were pre-processed using snow-cover and land
surface temperature data, and temporally smoothed with the
enhanced TIMESAT algorithm. An objective third derivative
test was applied to define key phenology dates and retrieve a set
of phenology metrics. This algorithm has been applied to two
MODIS VIs: Normalized Difference Vegetation Index (NDVI)
and Enhanced Vegetation Index (EVI). In this paper, we describe
the algorithm and use EVI as an example to compare three
sets of TIMESAT algorithm/MODIS VI combinations: a) orig-
inal TIMESAT algorithm with original MODIS VI, b) original
TIMESAT algorithm with pre-processed MODIS VI, and c)
enhanced TIMESAT and pre-processed MODIS VI. All retrievals
were compared with ground phenology observations, some made
available through the National Phenology Network. Our results
show that for MODIS data in middle to high latitude regions, snow
and land surface temperature information is critical in retrieving
phenology metrics from satellite observations. The results also
show that the enhanced TIMESAT algorithm can better accom-
modate growing season start and end dates that vary significantly
from year to year. The TIMESAT algorithm improvements con-
tribute to more spatial coverage and more accurate retrievals of
the phenology metrics. Among three sets of TIMESAT/MODIS VI
combinations, the start of the growing season metric predicted by
the enhanced TIMESAT algorithm using pre-processed MODIS
VIs has the best associations with ground observed vegetation
greenup dates.

Index Terms—MODIS, NACP, phenology, TIMESAT.

I. INTRODUCTION

L AND surface phenology is defined as the seasonal pattern
of variation in vegetated land surfaces observed from

remote sensing. Because the seasonal pattern of vegetation is
sensitive to small variations in climate, phenological records
can be a useful proxy in the study of climate change. Land
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surface phenology is distinct from the traditional definition
of phenology, which is the study of the times of recurring
natural phenomena, i.e., the date of emergence of leaves and
flowers, and the date of leaf coloring and fall in deciduous
trees (http://www.usanpn.org/). The traditional definition
refers to specific life cycle events using in situ observations
of individual plants or species, while land surface phenology
observed from remote sensing is aggregated information at the
spatial resolution of satellite sensors [1]. The Advanced Very
High Resolution Radiometer (AVHRR) series is the first set
of satellite sensors that have a frequent repeat cycle and syn-
optic information suitable to monitor land surface vegetation
phenology across large areas [2]. The Moderate Resolution
Imaging Spectroradiometer (MODIS) provides a more com-
prehensive data source to study land surface phenology at
continental and global scales. The two MODIS sensors are key
instruments aboard NASA’s Terra and Aqua satellites. Each
MODIS sensor observes the entire Earth’s surface every one to
two days and provides land surface information at scales useful
for studying land surface processes (250 m to 1 km).

Developing algorithms to automatically retrieve land surface
phenology metrics from satellite data has been a popular re-
search topic for the last decade. However, the nature of satel-
lite data makes it difficult to extract phenological metrics from
it directly. First, satellite data are noisy due to variations in
viewing and illumination geometry, sky and cloud properties,
and surface conditions. Second, there are absences of vegeta-
tion information due to clouds, snow, and other effects such as
atmospheric aerosols. Therefore, time-series satellite data are
commonly quality-screened and/or smoothed to minimize noise
and compensate for the absence of data before phenological
metrics can be estimated. Various methods have been devel-
oped to estimate phenology metrics based on the time series
of remotely sensed vegetation index (VI), from simple linear
smoothing window methods [3], [4] to more complicated an-
alytical curve function methods [4]–[6]. After smoothing the
dataset, most of the algorithms have used a prescribed threshold
over the time series to define the start and the end of the growing
season [2], [3], [7]. Some algorithms use an analytical indicator
to define the start and end of the growing season, e.g., maximum
curvature rate of fitted logistic curve [5].

We enhanced the TIMESAT program to develop a phenology
retrieval algorithm. TIMESAT was developed by Jonsson and
Eklundh [4] for analyzing time-series satellite sensor data. The
advantages of this program are: a) it is open source software,
b) it provides three different smoothing functions to fit time-
series data: asymmetric Gaussian, double logistic and adaptive
Savitzky–Golay filtering, c) a user-defined weighting scheme is
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applicable in the smoothing process, and d) a comprehensive
set of phenology metrics is generated from the smoothed time
series satellite data.

Gao et al. [8] revised the TIMESAT software to produce
temporally smoothed and spatial gap-filled MODIS Normalized
Difference VI (NDVI) and Enhanced VI (EVI) products. The
NDVI and EVI are calculated from 8 day composite MODIS
Terra surface reflectance products (MOD09Q1 and MOD09A1)
at 250 m and 500 m resolution [9], [10]. When calculating 250
m resolution EVI, the 500 m blue band is extrapolated from
500 m resolution to 250 m resolution. Our research is based
on the revised TIMESAT software of Gao et al. [8] and makes
additional improvements to retrieve MODIS phenology metrics
based on MODIS time-series VI datasets.

In this paper, we describe further improvements in our
TIMESAT-based phenology retrievals. We use EVI as an ex-
ample to compare the phenology metrics retrieved from three
sets of TIMESAT/MODIS VI combinations: 1) the original
TIMESAT algorithm with the original EVI, 2) the original
TIMESAT algorithm with pre-processed EVI, and 3) the en-
hanced TIMESAT and pre-processed EVI. Finally, we assess
the association between retrieved vegetation greenup dates and
ground observations.

II. METHODOLOGY

A. Selection of the Smoothing Function

There are three smoothing functions available in TIMESAT
software: adaptive Savitzky–Golay filtering, asymmetric
Gaussian, and double logistic. The adaptive Savitzky–Golay
filtering approach uses local polynomial functions. It can
capture subtle and rapid changes in the time-series but is
also sensitive to noise. Both asymmetric Gaussian and double
logistic approaches use semi-local methods. Less sensitivity to
the noise tends to provide a better description of the beginning
and end of the growing season. Gao et al. [8] found that both
asymmetric Gaussian and double logistic approaches in the
TIMESAT program produced similar results, with the exception
of the asymmetric Gaussian method, which is less sensitive to
the incomplete time-series data. This is a significant advantage
considering many missing data or poor quality dataexist in
satellite observations due to snow, clouds, shadow, and very
low sun angle. Therefore, the asymmetric Gaussian method
was selected for temporally smoothing data and estimating phe-
nology metrics. The base function of asymmetric Gaussian is

if

if
(1)

For this function, determines the position of the maximum
or minimum with respect to the independent time variable ,
while and determine the width and flatness (kurtosis) of
the function for values greater than (the right-hand side or
second half of the season). Similarly, and determine the
width and flatness of the left side (or first half of the season).
The details of the algorithm can be found in [4] and [8].

Fig. 1. An example of smoothing and gap-filling MODIS NDVI data for the
three-year period 2005–2007. The selected 500-m resolution pixel is in tile
h12v04. The applied smoothing function is the asymmetric Gaussian function
[2].

B. Preprocess VI: Eliminating Noise and Filling the Winter
Data Gap

Fig. 1 shows the temporal trajectory of EVI from 2005 to
2007 of a pixel located in the Harvard Forest, USA (from
MODIS tile h12v04 [15]). The time-series data clearly contains
some noise due to variations in viewing and illumination ge-
ometry, sky and cloud properties, and snow cover. Some of this
can be removed by eliminating the values for which the quality
assessment (QA) indicates poor pixel quality [11]. Excluding
the poor quality data in the curve fitting progress improves the
retrieval quality. However, the temporal curve is not retrievable
when there is missing or poor quality data. The threshold of
the retrievable data gap, a parameter in the TIMESAT software,
is four months if there is one growing season within a year,
and two months if there are two growing season within a year.
When the data gap is larger than the threshold, greenup and/or
browndown, information could be missing from the time series
and the fitted curve would not be accurate. However, if the data
gap occurs in the non-growing season (e.g., winter), when the
vegetation reflective characteristics should remain relatively
constant, the curve fitting process should still be performed. In
our approach, to define the winter season, we utilize: 1) the snow
flag embedded in the QA information for the MODIS surface
reflectance product (MOD09A1) and 2) the 8-day composite
MODIS Land surface temperature product (MOD11A2) [16],
[17]. The winter season is defined as a period which is longer
than half a month when a pixel is snow-covered or the night
land surface temperature is equal to/or below 0 C (also known
as a frost day). Many of the biochemical processes of vegetation
are sensitive to low temperature [18]. The photosynthesis of
vegetation increase quickly once the temperature exceeds the
minimum temperature threshold. Different ecosystems have
different minimum temperature thresholds. For example, the
threshold for northern spruces and pines is C [19], while
the threshold for tropical trees is 0 C [20]. The minimum
temperature threshold ranges from C to 5 C [21], [22]. It
is impossible to assign the minimum temperature threshold for
each ecosystem in the continental/global scale. Therefore, we
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Fig. 2. An example of the biophysical information extracted by first, second, and third derivative of time series EVI curve.

use 0 C as a universal threshold to help defining the growing
season. A smoothed flat curve is used to connect the latest
growing season point and the first growing season point of the
next growing season. Then these revised data are fitted with a
Gaussian curve (Fig. 1).

C. Improved Method for Determining Phenology Dates

To improve the accuracy of estimating phenology dates, we
first revised the TIMESAT algorithm to incorporate ancillary
information (the snow-cover flag and land surface temperature
from MODIS data products, Section II-B). In the original
TIMESAT software, the key phenology dates are identified
with a threshold method (the default value is 20% of the
seasonal amplitude, Fig. 2(c)) measured from the left or right
minimum level. The advantage of this method is that it is easy to
tune the threshold according to the local conditions. However,
there is no underlying biophysical meaning for the threshold
and a single threshold value may not be suitable for different
locations and/or different species. We are producing phenology
data sets at the continental scale and require a more robust and
objective approach to retrieve key phenology dates for a wide
range of ecosystem types.

The derivative of the time-series data can be used to identify
the change of state, such as the start/end of greenup[5]. We in-
vestigated the derivatives of VI time-series data and selected the
third derivative as the indicator for best indentifying phenology
dates. Fig. 2 shows the temporal trajectory of EVI and the first,
second, and third derivative of EVI for a pixel in the Harvard
Forest in 2006. The local maximum and minimum of the first
derivative curve corresponds to the maximum rate of increase
and decrease of the corresponding greenup and browndown pro-
cesses. The local maximum and minimum of the second deriva-
tive curve corresponds to the beginning of the greenup, end of
greenup, peak growing season, beginning of the browndown,
and end of browndown, respectively. The local maximum and
minimum of the third derivative curve corresponds to the begin-
ning of greenup, maximum increasing slope, end of greenup,
beginning of browndown, maximum decreasing slope, and end
of browndown.

Both the second and third derivative curves retrieve the timing
of the greenup and browndown, as marked in Fig. 2(b) and (c),
respectively. The beginning of greenup detected by the second
derivative curve represents the timing when the majority of
vegetation within the pixel is turning green. The beginning of



364 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 4, NO. 2, JUNE 2011

Fig. 3. An example of fitted NDVI curve over unevenly distributed growing
seasons. This sample pixel locates in Southwest US (within tile h09v06). The
data period is 2005–2007.

greenup detected by the third derivative curve selects the point
on the fitted curve where the change of the greenup rate is the
greatest. We chose the third derivative curve because the timing
is at the very beginning of the change in VI, representing the
first flush of greenness on the ground. This agrees with the
definition of “beginning of greenup” normally used by the
ground observations, in which the first green leaves appear. The
same reasoning was used to select the third derivative curve to
detect the end of greenup, the beginning of browndown, and
the end of browndown.

D. Retrieving Unevenly Distributed Growing Seasons

To retrieve phenology metrics for one calendar year, three
years of data are required, including the one year prior to and
after the year of interest (Fig. 1). All growing seasons within the
three-year period are retrieved, but only the growing season(s)
of the middle year are recorded. The original TIMESAT al-
gorithm assumes the growing season starts and ends at a sim-
ilar time annually. It tries to locate the growing season for the
second year in the same time period as the first and third years.
However, it is not always the case especially for semi-arid re-
gions where the growing seasons are driven by the precipitation.
For example, in Fig. 3, the original TIMESAT tries to locate a
growing season at the middle year around days 73 to 161. It
was not successful because the initial flush of greenness in the
second year (2006) is not present perhaps due to drought or fire.

We made three improvements to capture unevenly distributed
growing seasons. First, we fit the Gaussian curve twice over
the original MODIS VI. The weight of high quality VI is en-
hanced if they are not fitted during the first algorithm iteration
[8]. Secondly, we re-defined the start/end of growing season ac-
cording to the Gaussian curve from the first fit iteration. We
do not assume even distribution of the growing season over the
three years, but define the start/end of the growing seasons ac-
cording to the maximum and minimum VIs over the entire pe-
riod. Thirdly, the enhanced algorithm examines the start and
end of all growing seasons, then records the first two growing
seasons, which occur in the second year of the three-year time
series. Each growing season is considered as occurring in the
second year if it begins within the second year and ends by

the end of the third year. In the sample pixel shown in Fig. 3,
the enhanced TIMESAT algorithm captures the growing season,
which spans the second and third years. The recorded growing
season begins in the second year around day 300 (this example
pixel is from the Southwest US at latitude 28.21, longitude.

99.46. The annual rainfall from a weather station in Encinal,
Texas, about 14 miles southeast, indicated annual rainfall for
2005–2007 as: 20.45, 10.59, 29.89 inches. This supports the no-
tion that a phenology algorithm needs to allow for year-to-year
variability).

E. Gap-Fill Phenology Retrievals

The phenology data set includes 25 phenology parameters
and 3 ancillary parameters [Table I]. The first 11 parameters
are included in the original TIMESAT software. There are up
to two data layers for each parameter, corresponding to the first
two detected growing seasons. The remaining six parameters are
provided as additional information related to the pixel or time
series data.

For a small fraction of the pixels, the temporally fitted an-
nual VI curve is not derived because there are insufficient high
quality values. For these pixels, Gao et al. [8] developed a spa-
tial gap-filling approach. In this case, the data are gap-filled by
referencing an annual curve from a neighboring pixel with the
same land cover type. The seasonal variation of the referenced
curve is adjusted to fit the sparse high-quality observations and
substitute the missing and low quality observations. Then the
high-quality and substituted observations are used to refit an an-
nual VI curve from which the phenology metrics are estimated.
A benefit of this spatially smoothed and gap-filled algorithm is
that the spatial coverage of this phenology dataset is greatly im-
proved.

The enhanced TIMESAT algorithm has been applied to
retrieve phenology metrics from both MODIS EVI and NDVI.
Fig. 4 shows the greenup and browndown dates estimated
using this approach over North America for 2006. Fig. 5 shows
the data density contour of greenup and browndown date in
dateEVI – dateNDVI space. More than 50% of the pixels have
similarly retrieved greenup/browndown dates from EVI and
NDVI. The difference emerges in Midwest and Southwest
US, and Florida. The Midwest and Southwest are semi-arid
regions, while Florida is dominated by green vegetation. In
these regions, the signal of the growing season is not distinct
where either the growing season is very short or the magnitudes
of VI changes during the growing season are very small. From
Fig. 5, the difference between browndown date is more than the
difference between greenup date. This is because the brown-
down is a more gradual progress than greenup, which makes it
easier to determine.

The difference between phenology dates retrieved from EVI
and NDVI is negligible compared with the difference between
phenology dates from the original and enhanced TIMESAT.
Here, we use EVI as an example to compare the phenology
metrics retrievals from the original and enhanced TIMESAT.
It should be noted that the phenology metrics retrieved from
NDVI show similar differences between original and enhanced
TIMESAT. However, we do not present NDVI results here to
reduce the redundancy.
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TABLE I
LIST OF BIOPHYSICAL PARAMETERS INCLUDED IN MODIS PHENOLOGY PRODUCT

The first eleven parameters are from original TIMESAT software. There are two data layers for each
parameter, corresponding to the first two detected growing seasons. The remaining six parameters are
added for the user’s convenience. There is one data layer for each parameter.

F. Evaluation of the TIMESAT Algorithm Improvements

To evaluate the improvements described above, we compared
three sets of TIMESAT and MODIS EVI combinations: a) Orig-
inal EVI and Original TIMESAT (OO), b) Preprocessed EVI
and Original TIMESAT (PO), and c) Preprocessed EVI and En-
hanced TIMESAT (PE). MODIS EVI is at 500 m resolution. The
study region covers the middle and eastern US (Fig. 4(a)) with
a focus on four specific MODIS tiles: (1) h12v04, (2) h11v05,
(3) h09v06, and (4) h08v06 (Fig. 4(c)) [15]. Tile 1, over the
New England region, represents an area with a strong growing
season and a long period of snow cover. Tile 2 represents an
area with a strong growing season signal and little, if any, snow
cover. Tile 3 includes Southwest Texas and Eastern Mexico
covering semi-arid and non-arid areas. Here the temporal dis-
tribution of the growing seasons is complex, especially in the
boundary region between semi-arid and non-arid regions. Tile
4, over Mexico, represents the growing season characteristic of
a semi-arid region.

III. RESULTS AND DISCUSSION

Fig. 6 shows the dependence of greenup and browndown
dates on latitude for different land cover types across the
middle and eastern US between 30 and 50 . The figure
was created by computing average dates for greenup for one

degree increment of latitude, stratified by land cover classes
provided by the Collection 4 MODIS land cover product [12].
The progressively later greenup dates and earlier browndown
dates from south to north are consistent with known vegetation
phenology characteristics. At lower latitudes (30 to 40 ),
snow cover is less prevalent through winter. Therefore, the
snow flag and land surface temperature are less frequently used
to define the growing season. The greenup and browndown
dates estimated from the original TIMESAT algorithm (OO
and PO) agree very well. However, at this lower latitude, the
enhanced TIMESAT algorithm (PE) reports earlier greenup
and later browndown dates. This is due to the use of the third
derivative method to define phenology dates (see Section II-C).
In mid to high latitude regions (40 to 50 ), the latitudinal
dependence of greenup dates is apparent. However, the brown-
down dates from OO and PO shows less latitude dependence
than the PE algorithm (e.g., deciduous forest between 45 and
50 , crops between 40 and 45 , and grasslands between
45 and 50 ). For the crop and grasslands cover types at
high latitude, we see some spurious and unexpected variation
in the browndown dates for the OO and PO algorithms with
respect to latitude. This is likely due to the fact that neither
algorithm is accounting for snow cover or land surface tem-
perature. Fig. 6 shows that the phenology dates retrieved from
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Fig. 4. The days of greenup and browndown derived from 500 m resolution MODIS EVI and NDVI over North America in 2006. The black box in panel (a)
marked the area where we performed the latitude-dependence analysis. The black boxes mark the four tiles, (1) h12v04, (2) h11v05, (3) h09v06, and (4) h08v06,
where we perform detailed analyses. (a) ������� . (b) ���	�
�	� . (c) ������� . (d) ���	�
�	� .

Fig. 5. Data density contour of greenup (a) and browndown (b) date in date–from-NDVI-EVI space. The space enclosed by the red line contains 20% data, while
the green and blue lines correspond to 50% and 80% density, respectively.

enhanced TIMESAT algorithm, which incorporates the snow
flag and land surface temperature, exhibit a more reasonable
latitudinal dependence than the phenology dates estimated from
original TIMESAT algorithm (OO and PO).

We employ a retrieval ratio to describe the spatial coverage of
the land pixels with estimated phenology metrics. Overall, PE
exhibits the highest spatial coverage (or retrieval ratio) among
three sets of algorithm/MODIS data combinations. The retrieval
ratio varies from one region to another. Fig. 7 presents the re-
trieval ratio of the four MODIS tiles selected for discussion. In
Tile 1, the retrieval ratio of OO is only 43% while PO and PE
are both above 99%. This is due to the long snow-covered period
in the North Eastern US. The snow-covered pixels are consid-
ered poor quality and will not be applied in curve fitting. Here
OO failed because of a lot of data was either poor quality or
missing, while PO and PE succeeded because missing values
within the non-growing seasons are filled in the preprocess step
(Section II-A and Fig. 2). In all other tiles, there is little or no

snow cover. Therefore, all three algorithm/MODIS combina-
tions perform well with similar retrieval ratio. For tile 3, the
retrieval ratio of PE is about 5% higher than OO and PO. This
is due to the complex growing season pattern at the boundary
of semi-arid and non-arid region (Fig. 4). Here PE’s successful
retrieval is a result of the second fitting process and adjusted
growing season positions (Section II-D).

Fig. 8 presents histrograms of the pair-wise differences in
phenology dates retrieved from three sets of TIMESAT/MODIS
data combinations. Considering the different retrieval ratios
(Fig. 7), Fig. 8 only includes the region where all three sets
report phenology metrics. In general, the phenology dates
from OO and PO methods agree well, while PE reports earlier
greenup dates and later browndown dates. This is due to the
different method used to define greenup and browndown dates.
OO and PO are using 20% of the seasonal amplitude as the
threshold. The positions selected by the 20% threshold are
within the very beginning and end of the growing season,
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Fig. 6. MODIS 500 m EVI greenup (earlier) and browndown (later) dates averaged every 1 degree of latitude for the main landcover types for the six MODIS tile
region in Fig. 4(a) using the (a) OO, (b) PO, and (c) PE methods.

which are defined by the third derivative (Fig. 2(c)). This date
difference also depends on how quickly the EVI changes during
greenup and browndown. For example, the greenup in Fig. 2(c),
20% amplitude is achieved later if the EVI changes slower,
while the greenup date determined by the third derivative is
relative stable no matter EVI changing quicker or slower.
Therefore, a quicker change leads to a smaller difference
between phenology dates captured by 20% amplitude and the
third derivative method and vice versa. Vegetation normally
changes more quickly during greenup than browndown. There-
fore, the difference between enhanced TIMESAT and original
TIMESAT is much smaller in greenup than in browndown
(Fig. 8).

Finally, the association between the estimated greenup dates
and ground observations was assessed. The ground observations
are provided by various projects, including the Chequemegon
Ecosystem Atmosphere study, Global Learning and Observa-
tions to Benefit the Environment (GLOBE), Harvard Forest
Long Term Ecological Research (LTER), Howland Research
Forest, Long Lake Conservation Center, Prairie Westlands
Learning Center, and Rocky Mountain Biological Laboratory

Fig. 7. Successful retrieval ratio of OO, PO, and PE algorithms over study tiles.

(Table II). The first two projects report greenup dates for two
and five sites respectively, while other projects report phe-
nology events at a single site. It should be noted that not all
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Fig. 8. Histograms of difference of phenology dates derived from OO, PO, and
PE over 500 m EVI.

projects record first flush of the leaves. The Long Lake Con-
servation Center and Prairie Westlands Biological Laboratory
records include many phenological events, e.g., flowing time,
animal migration etc., but without the record of greenup. For
Long Lake Conservation Center, the phenology diary records
consist of “Ice completely gone off Long Lake” on April 10,
“60 degree outside” on April 11, and “Red maples blossom”
on April 15. We considered these phenomena related to the
timing of greenup. We selected the April 11 as the greenup date
(60 degree outside) for this site. For Prairie Wetlands Learning
Center, the phenology diary reports consist of “western chorus
frogs singing in center pond” on April 5th, and “pasque flowers
blooming” on April 12th. The first event presents the timing
of the complete ice melt. The second event presents the timing
of appearance of green leaves. Therefore, we selected April
5th as the greenup date for this site. The inaccuracy of greenup
dates of these sites should be within 7 days, which does not
lead to a significant change in the comparison with retrieved
greenup dates from satellite data. Fig. 9 shows the association
between estimations and ground observations. OO has the least
valid retrievals ( ) over ground observation sites and the
weakest correlation ( ). Four of twelve sites are not
successfully retrieved due to the long snow-covered period. PO
and PE have successful retrievals over all ground observation
sites ( ), while PE’s retrievals have better correlation
( ) with ground observations than PO’s estimations

( ). The root mean square error (RMSE) for OO,
PO, and PE are 23.5, 23.1, and 11.1, respectively. The average
of the bias (defined as the difference between estimated and
observed greenup dates) for OO, PO, and PE results are 14.4,
9.4, and 0.3 days. OO and PO tend to report later greenup
dates than ground observations, while PE results do not have
significant bias comparing with ground observations. This is
due to the difference on how to determine greenup dates. The
default 20% amplitude threshold, used by OO and PO, presents
the ground situation when most of the leaves are at bud break.
This usually happens later than the greenup date recorded by
the ground observers, who normally note the first leaves at
bud break which represents the start of photosynthetic activity.
The design of the third derivative method is to detect the first
appearance of green leaves. This is more representative of the
criteria of ground observers.

IV. CONCLUSIONS

This paper described a vegetation phenology estimation al-
gorithm based on preprocessed MODIS data and the enhanced
application of the TIMESAT software. This algorithm is one of
several that have been developed to estimate phenology met-
rics using MODIS data. It has been used to produce 250 m
and 500 m resolution in North America annual phenology met-
rics based on MODIS EVI and NDVI. The datasets are freely
available through the web-based distribution system (http://ac-
cweb.nascom.nasa.gov) together with 500 m resolution (based
on MODIS EVI and NDVI) and 1 km resolution phenology
products from 2000–2007 based on the MODIS LAI product
(following the same algorithm presented here). Processing op-
tions include mosaicing of multiple MODIS tiles, reprojecting
the products to a regional grid, subsetting the products spatially
and by parameter, aggregating the products spatially, and se-
lecting two options for file (HDF or GeoTIFF).

We improved the TIMESAT algorithm by incorporating an-
cillary information, snow-cover flag and land surface tempera-
ture, from MODIS data products. Through comparing the phe-
nology metrics retrieved from original and enhanced TIMESAT
software, we found that enhanced TIMESAT software has a
higher overall successful retrieval ratio and better geographi-
cally and ecologically realistic estimates of phenology events
than the original TIMESAT software. A simple assessment of
the association between greenup dates from original and en-
hanced TIMESAT indicates satisfactory result from enhanced
TIMESAT.

Validation is a vital step for calibrating remote sensing based
scientific algorithms [13]. However, validating phenology met-
rics derived from moderate or coarse resolution satellite data
product is difficult due to the scale-mismatch with ground obser-
vations as well as vegetation heterogeneity. Vegetation is rarely
uniform at the scale of MODIS resolution, while field observa-
tions normally indentify the timing of the budburst or flowering
for one or a few plants at each validation site. The relationship
between observed phenology events and the average vegetation
phenology status over the spatial coverage of the MODIS pixel
are usually not quantitatively assessed. For example, the bud-
burst timing of observed plants could be a few days earlier or
later than other plants within the MODIS pixel.
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Fig. 9. Comparison between field-observed greenup dates and greenup dates derived from MODIS 500 m EVI using the (a) OO, (b) PO, and (c) PE methods.

TABLE II
VALIDATION SITES AND THE FIELD OBSERVED EVENTS, WHICH ARE CONSIDERED AS THE TIMING OF GREENUP

Another obstacle is the quality of the ground data depends on
the experience of the data collector. The collection of the phe-
nology dates on the ground is different from collection of other
biophysical parameters, such as NDVI and Leaf Area Index
(LAI), and is often dependent on the subjective decision of the
data collector. For the same validation site, different data col-
lectors could give different phenology dates. Some may report a
few days earlier greenup dates, and the others may report a few
days later greenup dates. This depends on the data collector’s

experience and knowledge although protocols for ground col-
lection being implemented by USA National Phenology Net-
work (NPN).

Though various field programs are collecting phenological
information, most of them are recording specific species or
events not directly related to vegetation status. For example,
two ground observations in Table II are not directly vegeta-
tion status (one is based on temperature and one is based on
observing frogs or swans). Despite this, we utilized these two
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data sets as they are considered to be closely associated with
the timing of vegetation greenup.

Finally, phenological metrics derived from NDVI and EVI
are not in 100% agreement with each other [14]. We are still ex-
ploring which vegetation index is the best for presenting the phe-
nological phase. Also, we are working with the Land Product
Validation subgroup within the committee on Earth Observing
Satellite (CEOS) to continue an international effort to improve
both the reference data and methods available for the validation
of land surface phenology products (http://lpvs.gsfc.nasa.gov/).
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